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Asymmetry

e Perform
segmentation

e Extract
features from
the lesion
mask

e Highest
weight
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Border

Perform
segmentation
Analyze
textures and
color at the
lesion border
Lowest
weight

Color

Transform to
different color
spaces
Extract
features per
channel

Try BoW

Literature Review: ABCD Rule

Dermoscopic
structures

Perform
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textures and
color at the
lesion border
Try BoW



Preprocessing: Hair Removal

Sum of top/bottom hats
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Elongation criteria and size filtering
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(a) connected region  (b) outspreaded region  (¢) outspreaded square

Area filter and final mask dilation
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Preprocessing: Segmentation Pipeline
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Preprocessing: Segmentation Pipeline

Original Image

Enhanced and
smoothed
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Thresholding

FoV Mask

Otsu

Remove FoV Fill Holes

Final Segmentation
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Preprocessing: Segmentation

Dice scores of the developed
segmentation algorithm reported on
the HAM10000 dataset

1.0 -

0.8 1

0.6 A

0.4 -

0.2~

0.0 -

o,
Universitat
de Girona
N’



Segmentation

Segmentation algorithm
fails for the three class
problem
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Features Extraction: Color

Channel-wise color
features

Mean

Variance
Skewness

Kurtosis

Max

Min

Entropy

Number of unique
values
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Features Extraction: Color

® Lab* colorspace
features were the
weakest (removal
of these features
led to the
improvement of
the weighted f1
from 0.7881 to
0.7974) and
decreased
number of
features from 96 ||
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Preprocessing: Color Normalization
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original sking_norm meanshift
Color space
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Features Extraction: Texture

LBP hi ]
GLEM with: P histograms ', :

9 different radius and @
- Distances [2, 5, 7, 10, 15] number of points combinations \ ;
- Angles [0, 45, 90, 135]

GLCM examples Gray scale image LBP image
GLCM features

1. Contrast

2. Dissimilarity

3. Homogeneity

4. Energy

5. Correlation
_| 6. Angular Second Moment (ASM) A TEEREREE: é1'0l'n'z1'31'41'51'61'71'31'9z‘o!zmzzuszazez'izaz'sz'%baa3'23'33'43'53'63'73'83‘94'04'14a4s4a4'54'6494'845555'15'25'35a5'55'65'75'85'9
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Feature Extraction: Shape

Asymmetry and
border features

1. Number of lesions

in the maSk Five-fold CV on fuIItraSra;eetfoel;(;E?ellsenge 1 results on only
2. I\gean and std of - "
their areas
3. Area e
4. Perimeter sl
5. Circularity BaRE
6. Eccentricity L
/. Aspect ration 0.692 1
8. Compactness index  oes0]
9. 7 hu moments 0.688 1
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Feature Extraction: BoW

Blu=ter Histogram of
Sample Pense CaICL.JIate B Descr.lptors ticiared Calculate TE-IDF
Keypoints Descriptors with .
descriptors
k=|vocabulary|

. . . L "o Vo pone”
Descriptors experimented with: LB S LR

. . TOROCUR AT
1. Brisk: constructs the feature descriptor of the local Raats OO RS

image through the gray scale relationship of random ke
point pairs in the neighborhood B Lot

2. Color, GLCM, LBP: Calculate the features within patch
size of 25 centred at the keypoint
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Feature Extraction: BoW

Keypoint Sampling Accuracy for Texture Accuracy for Color Comments
Strategy Descriptors Descriptors

(challenge 2) (challenge 2)
1. Random within 0.5818 0.6323 Segmentation not good
segmentation mask enough for challenge 2
2. Random within 0.5717 0.6606 Better for color features

centered radius as
mask (radius 100)

3. Gaussian sampled 0.5959 0.62424 Better for texture features
at the centre of the
image
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Feature Extraction: BoW

Vocabulary size experiment: 100 words are enough

1.0 4
B Train kappa
B Validation kappa
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----------

SAlA Feature Extraction: BoW

Binary Problem

- BoW not better than whole
image features

3 ClaSS PrOblem 00" Brisk_BoW LBP_BoW LBP Whole Image GLCM_BoW GLCM Whole Image
- BoW Improved the validation
accuracy by ~0.5
—
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MAIA
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Challenge 1: Overview and Features

Nevus Images

Overview: Binary classification problem;
balanced huge dataset

Total: 358 features of color, texture and shape

No BoW features didn’t bring significant
improvement

Explored: reducing feature size to tackle the
curse of dimensionality

Universitat
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Challenge 1: RF Feature Selection

- Lab color space features were removed.
- Selecting k-best features didn’t improve the validation accuracy

0.5 1

0.4 1

0.3 1

0.2 1

Percentage of features from top 20%

0.0 -

color glcm lbp shape
Feature type
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Challenge 1: PCA Dimensionality Reduction

150 principal components chosen as final set of features
from 358 features

104 0.850 A

0.8 - 0.845 A
.0
©
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c 0.6 A > 0.840
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0.830 -
—— Cumulative explained variance
Individual explained variance
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Principal component index ——
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Challenge 1

- All extracted features reduced with PCA (150
components) were used

- Soft-voted Ensemble of tuned SVM and XGBoost
classifiers was used as the best trade-off between training
(less overfitting) and validation(generalization) accuracy.

Training Accuracy Validation Accuracy

0.844517
(LB23050 0.812744

0.836685  0.838266  0.837123  0.842315

1 1
0.946307 0931842 0:948681 |08 -

1.0 A

0.843678

0.7 A
0.8 A

0.6

0.6 1 0.5

0.4 1

0.4 A
0.3 A

0.2 A
0.2 A

0.1 A

0.0 4 0.0 -

svc_pca svc_pca_100 f_pca xgb_pca stacking hard_voting soft_voting

svc_pca svc_pca_l100 f_pca xgb_pca stacking hard_voting soft_voting
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MAIA

——

Challenge 2: Overview and Features

Squamous Cell Melanoma

Challenges: multi class, less data, highly
imbalance data set.

Total: 442 features of color (both global and
BoW tf-idf) and texture

No shape features since the segmentation
results were poor

Explored: reducing feature size to tackle the
curse of dimensionality and techniques to sive
the imbalance
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80 A

Number of featuers
[«)]
o
1

20 A

color glcm Ibp bow
Feature type
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Challenge 2: RF Feature Selection

Percentage of features from top 20%

color glcm lbp bow
Feature type

Analysis of feature importances of top 20% RandomForest features shows that global
color and glcm texture features were the most prominent ones with BowW and LBP
features still having an important contribution.

A further investigation of a features set composed of these 88 top 20% features was

done (referred to as rf_fs) .
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w.a Challenge 2: PCA Dimensionality reduction

Validation set kappa
score for the different
number of
components in PCA
decomposition of all
442 features.

A further investigation
of a features set
composed of these
150 PCA features was
done (referred to as

pca) .
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Kappa score
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- Variance explained
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Number of components
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Challenge 2: Imbalance Problem

Data-wise we have

tried:

e oversampling

e undersampling ‘

e Synthetic Minority
Oversampling
Technique (the N . | l N .

on Iy One tO ShOW Train set class distributions before and after SMOTE
d ny Im provement) svc_full svc_smote

Frequency
=
w
o
o

Model-wise: use of
balanced class weights
in all of the classifiers
we were testing

——
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Challenge 2: Ensembling

I
[

Models
e XGboost
[ SVM F Data Set

|| R PcA
o RF — F RF Features
§ Full dataset
\/ SMOTE

Train Kappa Scores Validation Kappa Scores

0.999646 0.747758 0.748887
0- 0.735066
L0 0.956234 0342 251086 0.717428

0.919459 .7 4 0.689156

0.642594
0.822827

0.8 1

0.748624 0.545012

0.6

0.4

0.2 1

- svc_full rf_smote svc rffs rf_ pca svc_smote stacking hard_votingsoft voting ’ svc_full rf_smote svcrffs rf_pca svc_smote stacking hard_votingsoft_voting
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Challenge 2: Final model

Taking a closer look at the confusion matrices of the top 5 model/dataset combinations from the
previous slide we can notice that SVM on SMOTE data achieved the best results. It has the
smallest overfitting while maintaining the best proportion between 3 classes.

Therefore, we have selected it as our final model for the challenge 2 with the validation kappa of
71.

svc_rf fs svc_smote stacking hard_voting ; soft_voting

; 0.8
0.047 0.0015 -0.8 - b & - ¢ 0.047 0.0044 E - 2 - 2 ;

0.6 0.6
- 0.4 0.4
0.2 0.2
1 ; ' > i ‘ 1 1
Predicted Predicted Predicted Predicted Predicted
svc_rf fs svc_smote stacking hard_voting soft_voting
-600 -600
-600 -600
o- o- -500 o- o - o -
-500 L
-500 -500 200
-400 i
400 400 200 400
g g g g g
e 1300 & 7 i 1300 7 300 & ~ 300
.200 '200 .200 200 200
N 100 o -100 o -100 -100 N 100
0 1 ‘ 1 1
Predicted Predicted Predicted Predicted Predicted
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Conclusions

® Color features are the most discriminative for both
problems

® Segmentation of lesions can lead to better results but is
qguite challenging, especially for malignant lesions

e BoW was able to improve performance on 3 class
problem, due to increased importance of the small

variations in color information between lesion types
o However for 2 class problems global color features were more
effective

e Adding additional features (like texture, shape or BoW)
improved the results however also led to increased
overfitting

e Data imbalance for 3 class problem was better solved with
balance weights SVM on SMOTE data, however the

minority class still was considerably underdetected
O needs more distinctive features

—t—
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Literature Review

| ISIC 2019 winning olution [1]:
.g‘ E‘ ensemble of Multi-Res EfficientNets +
| SEN154 2

t

o SIIM-ISIC Melanoma Classification .
Size matters Ensembling

winning solution [2]: ensembles of matters
EfficientNet B3-B7, se _resnext101,

resnest101

Instead of following monstrous ensembles and models we focused on:

e Single model architectures of different styles (convolutional and
transformer)

e Tuning the models and the data

e Focus on losses, augmentations and ensembling
e Pretext learning

——
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Literature Review

N !

MAIA
BACC OF DIFFERENT DCNN MODELS ON THE ISIC 2018 SKIN LESION
CLASSIFICATION CHALLENGE TEST SET.
model BACC model BACC model BACC dataset 7-PT ISIC ISIC
VGG-11| 0.769 DenseNet-169 | 0.836 RegNetX-3.2G | 0.842 2017 2019
VGG-13 | 0.771 DenseNet-201| 0.829 RegNetX-4.0G| 0.834
VGG-16 | 0.745 DenseNet-161| 0.837 RegNetX-8.0G| 0.831
VGG-19 | 0.750 EfficientNet-b0 | 0.838 RegNetX-16G| 0.835
ResNet-18 | 0.812 EfficientNet-b1 | 0.842 RegNetX-32G | 0.832 Best RegNet | RegNet | RegNetY
ResNet-34 | 0.825 EfficientNet-b2 | 0.853 RegNetY-400M |  0.839 model Y-800M | Y-1.6G | -8.0G
ResNet-50 | 0.834 EfficientNet-b3 [ 0.845 RegNetY-800M | 0.846
ResNet-101 | 0.838 EfficientNet-b4 | 0.842 RegNetY-1.6G | 0.850
ResNet-152 | 0.835 EfficientNet-bS | 0.843 RegNetY-3.2G| 0.858
SENet-50 | 0.832 EfficientNet-b6 | 0.848 RegNetY-4.0G| 0.848 Balanced | 0.652 0.743 0.59
SENet-101 | 0.845 EfficientNet-b7 | 0.847 RegNetY-8.0G | 0.846
SENet-152 | 0.835 RegNetX-400M | 0.823 RegNetY-16G | 0.849 accuracy
SENet-154 | 0.838 RegNetX-800M | 0.828 RegNetY-32G | 0.851
DenseNet-121 | 0.832 RegNetX-1.6G| 0.833
For the transformers we chose Swin architecture
e still one of the best performing single-model architectures on
ImageNet
® not very extensive research into transformers and skin lesion
cad (not like for convnets)
® easily available with PyTorch
——
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RegNetY

RegNet is a network design Mgt Mo g
space made up of : )
. 1x1, s=1 1x1, s=1
e Model architectures T T
e Different parameters that b i
define a space of possible 3x3, g, s=1 3x3, g, 5=2 1x1, s=
. [} 7 ry
model architectures i, & o
. o t
e Parameters can be the width, i, g=i 1%1, s=1
depth, groups, etc. of the " ol
network. (a) X block, s=1 (b) X block, s=2
A 5 .
=
40 45 erroSrO 55 60
——
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@ :
MAIA Swin Transformer

Segmentation Layer | Layer I+1

Classification detection...
A local window to perform

self-attention

[]

State-of-the-art performance in
vision tasks; two key concepts :
1. hierarchical feature maps: o

Y O
allows fine-grained prediction s,
B4 7
L] ° ° _—~ - A=
2. shifted window attention:
. . (a) (b)
improves complexity
ﬁx X 48 —Xx—XxC ﬁx—><2(,‘ ix x 8C
R T —— i 8 8 S e ____32" 32
HXWx3 SR ’:[ Stagel Stage2 ¢ Stage3 Staged \:
£ |3 H 2 :
E : § l Swin g’ Swin ? Swin Swin :
| & WE S iL’ Transformer = — Transformer Z — Transformer Transformer —4*
: S s Block 5 Block s Block Block :
£ |8 £ & :
=) B8 !
Input e \"_ = _ _____ %2 ph e x2 e 3 X6 ws Ohp T 2 5 _2_ -——— ;
(b) Swin Transformer Blocks T TTTTTTTTTTTTTTTTT
I' = s\: :,’ “ 7 . ~ :
Ezl-l.,i z! ‘ ! E A ‘ 2141 :
—+— LN —| W-MSA ‘ LN — MLP — LN~ SW-MSA. LN — MLP :
1 L)
| (B 2! E AR | Sl E
\ ,/ e R ’/
...................................
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©
MAIA

Validation Accuracy

90 -

& -

& -

87 -

% -

85 s

regnet_y_800mf regnet_y 1 6gf regnet_y 3 2gf regnet_y_8gf

Size greater than regnet_y 3 2gf,
started overfitting, and smaller
were underfitting!
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Number of parameters

Model sizes experiment

%250 - 10

92.25 - 5

92.00 -- -08
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2 91.25 é
(] % 3 | 1
= -04 23

91.00 -

90.75 - _02

90.50 --

swin_v2_t swin_v2_s swin_v2_b

Size greater than swin_tiny started
overfitting!



&

MAIA Augmentation

Modified randaugment [3]: 21 transformations(13 colour and 8 shape)

 Randomly select one transformation from {color} transformations, and then
randomly select one transformation from {shape} transformations

Color transformations

Auto-contrast Polarize Equalize YUV

Invert Mixup Solarize-add

——
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Shape transformations

Shear Rotate
Cutout Flip



N Challenge 1: Augmentation

® Experiments on challenge 1: binary problem

Validation accuracy
Validation accuracy % ~

90.0 ]
89.8 .

90 - , |
89.6 i

& - —
894 3

86 - ‘ T
892 | -
89.0 4

82 - |

RegNet RegNet Augmentation

swin tiny swin tiny swin tiny
No Augmentation No unintuitive Augmentation
augmentations
—~—
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Challenge 1: Ensembling

Training batch

——
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| RegNet

| Swin

Feature N .
vector c t Classification
onca Layer
Output
Feature
vector
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N Challenge 1: Ensembling

Freeze Freeze the pretrained network and only train the linear layer

No Freeze Do not freeze any layer on the ensemble model

Validation accuracy

95
94 | ,
92 - - : |
o0 = — |

— RegNet best model Swin best model Freeze No freeze
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Loss functions

Challenge 1: Cross-entropy loss.

Challenge 2: Losses that tackle class imbalance.

1. Focal loss

FL(p) = —(1 — py)” log(py).
* where -log(p,) is the cross entropy loss
e (1- pt)Y is the modulating factor to down-weight easy
examples and thus focus training on hard negative.
* The focusing tunable parameter y smoothly adjusts the
rate at which easy examples are down weighted.

——
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Loss functions

2. MWNL Loss [1]:

* Overcomes the class imbalance issue in sample number
and classification difficulty

* |Improves the accuracy of melanoma classification by
adjusting the weight of the loss

¢
MWNL(z,y)=-C, (i)“ Y Loss;.
N 44 i=l
where

k

(1-p))log(p)) p;>T
Loss; =
G D ST

——
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,ﬁ?@ﬁ\ Challenge 2: Loss functions

1.00
model
s Swin tiny
096
8 094 -
£
&
=092
=
<

090 4
088 - |
0.86 | - 7‘

Cross entropy Focal loss MWNL loss

— Loss function
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wa Challenge 2: Cumulative Learning strategy

® First train the network on the originally imbalanced data.
e Then change the training gradually to a re-balancing mode.

0.92

0.91

0.90

0.89

0.88

0.87

i,
Universitat
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RegNet MWNL

Validation kappa

RegNet MWNL CLS

0.9300 -

0.9275

0.9250

0.9225

0.9200

0.9175

0.9150

09125

0.9100

Swin MWNL

Validation kappa

Swin MWNL CLS
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Balanced Sampling

* Weighted sampling of images to get balanced number of

images in each batch (swin-tiny)
Validation kappa

0.95

0.90

0.85

0.80

0.75

0.70

0.65

Cross entropy Focal MWNL
Loss functions

0.60

i,
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Challenge 2: Ensembling

MAIA
Freeze Freeze the pretrained network and only train the linear layer
No Freeze Do not freeze any layer on the ensemble model
Validation kappa
095 f
093 |
092 — —~
0.91 f , :
090 : ' f
.l L |
—_ RegNet best model Swin best model Freeze No freeze
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® .
N “Pretext learning”

Involves training a model for a task
other than what it will actually be
trained and used for. This Pretext Pretext task to learn:
Training is done prior to actual
training of the model.

® |esionsize
lesion colors

abcd scores
Needed to be performed with our other relevant patient
tested models. medical data

<
[ Data H Pretext task }7—[ Model
J
Model . ( Downstream Data
| L task

Shared architecture/weights

——
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“Pretext learning”

Pretext task
Eight class
classification

ack nevus bcc bkl def mel scc vac

nevus ack/bcc/bkl/def/mel/scc/vac

mel scc

——
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“Pretext learning” results

Validation accuracy for challenge 1 Validation kappa for challenge 2
0.95 0.95
0.94 0.94
0.93 | 0.93
0.92 0.92
0.91 0.91
0.90 0.90
0.89 - 0.89 : )
RegNetY RegNetY Swin Swin RegNetY RegNetY Swin Swin
pretext pretext pretext pretext

Only Swin was able to maintain
information learned during pretext
training at challenge 2 training due it

Both Swin and RegNetY improved
performance with the pretext task for

challenge 1. o _
it’s bigger size and memory.
RegNetY - 0.818 Swin - 0.835
——
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de Girona 20

S —



& Final models

M

Challenge 1
Ensemble (learnable feature fusion)
® RegNetY-3.2GF (with pretext
initialization)
® Swin-v2-Tiny (with pretext
initialization)

RandAugment

Cross entropy loss

Validation accuracy: 0.936

7~

=

Challenge 2

Ensemble (learnable feature fusion)

® RegNetY-3.2GF (without
pretext initialization
challenge 1 transfer
learning)

e Swin-v2-Tiny (with pretext
initialization and challenge

1 transfer learning)
RandAugment
MWNL loss

Validation kappa: 0.9533

Universitat
de Girona
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Grad-CAM

Grad-CAM of Correctly vs. incorrectly classified skin lesions

Universitat
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Conclusions

e Strong augmentations push models to learn a more robust set of features.

e Ensembling is a powerful tool that allowed us to combain and benefit from
2 different feature embeddings of convolutional and transformer models.

e Balanced sampling did help training the models and so did using
sample-weight sensitive losses like focal or mwnl did.

® Bigger model sized are more prone to overfitting so the size needs to be
fine-tuned depending on the problem and dataset.

® Pretext learning has great potential to improve the results, however the
more training or fine tuning we perform over the model the more the
initial weights change; only swin was able to benefit from it after challenge
1 and 2 fine tuning.

——
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